




Duração da Prova: 100 minutos



## Agrupamento de Escolas de Alter do Chão



Escola Básica 2,3/Secundária Padre José Agostinho Rodrigues

## Prova Escrita de Matemática

11º Ano de Escolaridade - Turma A

**VERSÃO 1** 

14 de Fevereiro de 2019

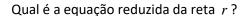
## **GRUPO I**

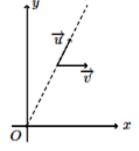
- As cinco questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas apenas a letra correspondente à alternativa que selecionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Cada resposta certa será cotada com + 5 pontos; cada resposta errada será cotada com zero pontos; cada questão não respondida ou anulada será cotada com zero pontos.
- **1.** Considere a função f , de domínio  $\mathbb{R}$ , definida por  $f(x) = 5 3 sen \left(3x + \frac{\pi}{6}\right)$ .

O contradomínio de f é:

**(B)** 
$$]-2,8]$$

(A) 
$$[2,8]$$
 (B)  $]-2,8]$  (C)  $[-8,8[$ 


**2.** Considere, no referencial o.n. xOy, os vetores  $\vec{u}$  e  $\vec{v}$  representados na figura.


Sabe-se que:

- Os vetores  $\vec{u}$  e  $\vec{v}$  têm norma unitária;
- O vetor  $\vec{v}$  é paralelo ao eixo Ox;

$$\bullet \quad \overrightarrow{u}.\overrightarrow{v} = \frac{\sqrt{5}}{5}.$$

r passa na origem e tem  $\vec{u}$  como vetor diretor.





(A) 
$$y = x$$

**(B)** 
$$y = 2x$$

(C) 
$$y = 3x$$

**(D)** 
$$y = 4x$$

**3.** O valor de a para o qual a reta de equação ax - y - 2 = 0 é perpendicular à reta definida por

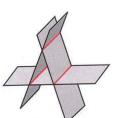
$$\begin{cases} x = 1 + 2k \\ y = 5 - 3k \end{cases}$$
,  $k \in \mathbb{R}$  é:

(A) 
$$-\frac{1}{5}$$

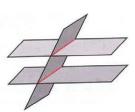
**(B)** 
$$-\frac{3}{2}$$

(D) 
$$\frac{2}{3}$$

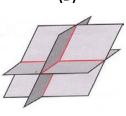



-4x + 2y = 1? 4. Qual das situações seguintes pode traduzir o sistema

$$\begin{cases} -4x + 2y = 1\\ 2y + z = -4 \end{cases}$$


(A)




(B)



(C)



(D)



**5.** O termo geral de uma sucessão  $(a_n)$  é dado pela <u>área a sombreado</u> do quadrado da figura n.



FIGURA 1



FIGURA 2



FIGURA 3



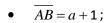
FIGURA 4

Se o quadrado da figura 1 tiver área igual a 1, podemos concluir que:

(A) 
$$a_n = \left(\frac{1}{2}\right)^{n-1}$$
 (B)  $a_n = \left(\frac{1}{2}\right)^{n+1}$  (C)  $a_n = \frac{n}{2}$ 

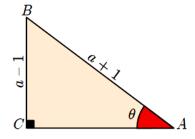
**(B)** 
$$a_n = \left(\frac{1}{2}\right)^{n+1}$$

**(C)** 
$$a_n = \frac{n}{2}$$


**(D)** 
$$a_n = 2 - n$$

## **GRUPO II**

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando os cálculos e todas as justificações necessárias. Quando não é indicada a aproximação que se pede para um resultado, pretende-se o valor exato.


**1.** Na figura está representado um triângulo retângulo [ABC].

Para  $a \in ]1,+\infty[$  , tem-se:

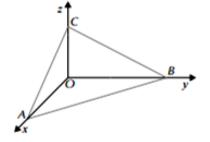


• 
$$\overline{BC} = a - 1$$
;

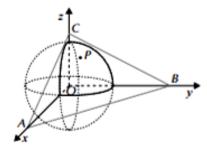
•  $\theta$  é a amplitude do ângulo BAC.



- **1.1.** Determine, em função de a, uma expressão para  $cos \theta$ .
- **1.2.** Suponha agora que a = 3. Determine, em graus, a amplitude do ângulo  $\theta$ .
- **2.** Mostre que, para todos os valores reais de x que dão significado às expressões, se tem:


$$\frac{1+sen x}{1-sen x} - \frac{1-sen x}{1+sen x} = \frac{4 tg x}{cos x}$$

**3.** Determine, <u>analiticamente</u>, os valores de  $x \in ]0,\pi]$  tais que:  $sen(2x) + cos(\frac{\pi}{2} + x) = 0$ .


**4.** Na figura está representada, em referencial o.n. Oxyz, parte do plano ABC.

Sabe-se que:

 $A, B \in C$  são pontos de interseção do plano ABC com os eixos coordenados;



- A(4,0,0), B(0,4,0) e C(0,0,3).
- **4.1.** Determine uma equação cartesiana do plano ABC.
- **4.2.** Seja M o ponto médio do segmento de reta  $\lceil AC \rceil$  . Determine uma equação vetorial da reta MB .
- **4.3.** O plano ABC é tangente, num ponto P, a uma esfera centrada na origem do referencial, tal como se ilustra na figura.



Tendo em conta que a reta OP é perpendicular ao plano ABC, determine o volume dessa esfera. Apresente o resultado arredondado às décimas.

Nota: Sempre que em cálculos intermédios proceder a arredondamentos, considere três casas decimais.

- **5.** É da uma  $a_n = 5 + \frac{2}{n}$ .
  - **5.1.** Mostre que a sucessão é monótona decrescente.
  - 5.2. Sem utilizar calculadora (exceto para eventuais cálculos numéricos), determine o primeiro termo que verifica a condição  $a_n < 5,1$ . Apresente o resultado na forma de fração irredutível.
  - **5.3.** Justifique que a sucessão  $(a_n)$  é limitada.
  - **5.4.** Considere agora a sucessão  $(b_n)$  definida por  $b_n = \begin{cases} a_n & \text{se } n < 10 \\ (-1)^n & \text{se } n \ge 10 \end{cases}$

Investigue se  $\frac{31}{6}$  é termo de  $(b_n)$ .

**FIM** 

|          | Grupo I | Grupo II |     |    |    |     |     |     |     |     |     |     |       |
|----------|---------|----------|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-------|
| Questões | 25      | 1.1      | 1.2 | 2  | 3  | 4.1 | 4.2 | 4.3 | 5.1 | 5.2 | 5.3 | 5.4 | Total |
| Pontos   |         | 12       | 10  | 14 | 22 | 20  | 15  | 20  | 18  | 15  | 15  | 14  | 200   |

Soluções: 1.1.  $\frac{2\sqrt{a}}{a+1}$ ; 1.2.  $30^{0}$ ; 3.  $\left\{\frac{\pi}{3}, \pi\right\}$ ; 4.1. 3x+3y+4z=12; 4.2.  $(x,y,z)=(0,4,0)+k\left(-2,4,-\frac{3}{2}\right), k\in\mathbb{Z}$ ; (Grupo II) 4.3. 36,5; 5.2.  $\frac{107}{21}$ ; 5.3. Não



Tel.: 245 612 371 Fax: 245 613 211

Professor: Carlos Manuel Lourenço

