Medidas de dispersão

- À procura da vencedora -

De acordo com o respetivo Regulamento, a vencedora de um concurso de patinagem artística será a jovem que tiver melhor pontuação média.

O quadro seguinte mostra as pontuações obtidas pelas três patinadoras, A, B e C melhor classificadas.

Α	9,5	9,2	9,7	9,8	9,5	9,3	9,5	9,7	9,3
В	9,8	9,5	9,2	9,5	9,4	9,5	9,6	9,8	9,2
С	9,9	9,5	9,3	9,0	9,0	9,8	9,6	9,7	9,7

1. Qual é a pontuação média de cada jovem? Atendendo às pontuações médias, será possível indicar a vencedora?

2. Como fazer, então, a seleção?

O júri decidiu escolher para vencedora, a patinadora que obteve pontuações mais concentradas em torno da média. Resolveu, então, determinar os desvios da pontuação em relação à média, ou seja, a diferença entre cada pontuação e a média e, em seguida calcular a média desses "desvios".

Concorrente A:

Pontuações de $\it A$	(x_i)	9,2	9,3	9,3	9,5	9,5	9,5	9,7	9,7	9,8
$d_i = x_i - x$		-0,3	-0,2	-0,2	0	0	0	0,2	0,2	0,3

Para a concorrente A, a média dos desvios em relação à das pontuações é:

$$\frac{-0.3 - 0.2 - 0.2 + 0.2 + 0.2 + 0.3}{9} = 0$$

Proceda de igual modo e calcule a média dos desvios para as patinadoras B e C. Que concluiu?

3. Não tendo sido resolvido o problema, o júri compreendeu que os sinais que precedem os desvios são os responsáveis pelo resultado encontrado. O júri calcula, então, a média dos valores absolutos daqueles desvios.

Pontuações de A (x_i)	9,2	9,3	9,3	9,5	9,5	9,5	9,7	9,7	9,8
$\left d_i\right = \left x_{i-}\overline{x}\right $	0,3	0,2	0,2	0	0	0	0,2	0,2	0,3

A média dos valores absolutos dos desvios chama-se $\underline{\text{desvio médio}}$ e representa-se por d_m .

$$d_m = \frac{1,4}{9} = 0,1(5).$$

3.1. Calcule o desvio médio das pontuações das patinadoras B e C.

3.2. Este critério já permitirá ao júri escolher a vencedora? Porquê?

3.3. É contudo possível eliminar desde já uma das concorrentes. Qual?

4. Em face de novo impasse, um elemento do júri propôs que se refizessem os cálculos, substituindo os desvios pelos seus quadrados e em seguida se calculasse a raiz quadrada do resultado.

Pontuações de A (x_i)	9,2	9,3	9,3	9,5	9,5	9,5	9,7	9,7	9,8
$\left((d_i)^2 = \left x_i - \overline{x} \right ^2 \right)$	0,09	0,04	0,04	0	0	0	0,04	0,04	0,09

A média dos quadrados dos desvios chama-se $\underline{\text{variância}}$ e representa-se por s^2 ou σ^2 .

$$s^2 = \frac{0.09 + 0.04 + 0.04 + 0.04 + 0.04 + 0.09}{9} = \frac{0.34}{9}$$

À raiz quadrado da variância chama-se **desvio padrão** e representa-se por s ou σ .

$$s = \sqrt{s^2} = \sqrt{\frac{0.34}{9}} \approx 0.19$$
.

4.1. Calcule a variância e o desvio padrão das pontuações da concorrente B.

4.2. Confirme que o desvio padrão das pontuações da concorrente C é superior aos restantes.

4.3. Poderá, agora, o júri classificar as concorrentes? Qual será a patinadora vencedora? Justifique.